A Footpad Structure with Reusable Energy Absorption Capability for Deep Space Exploration Lander: Design and Analysis

The footpad structure of a deep space exploration lander is a critical system that makes the initial contact with the ground, and thereby plays a crucial role in determining the stability and energy absorption characteristics during the impact process. The conventional footpad is typically designed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of mechanical engineering 2023-08, Vol.36 (1), p.93-270, Article 93
Hauptverfasser: Dou, Weiyuan, Qiu, Xiaohang, Xiong, Zhiwei, Guo, Yanzhao, Zhang, Lele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The footpad structure of a deep space exploration lander is a critical system that makes the initial contact with the ground, and thereby plays a crucial role in determining the stability and energy absorption characteristics during the impact process. The conventional footpad is typically designed with an aluminum honeycomb structure that dissipates energy through plastic deformation. Nevertheless, its effectiveness in providing cushioning and energy absorption becomes significantly compromised when the structure is crushed, rendering it unusable for reusable landers in the future. This study presents a methodology for designing and evaluating structural energy absorption systems incorporating recoverable strain constraints of shape memory alloys (SMA). The topological configuration of the energy absorbing structure is derived using an equivalent static load method (ESL), and three lightweight footpad designs featuring honeycomb-like Ni-Ti shape memory alloys structures and having variable stiffness skins are proposed. To verify the accuracy of the numerical modelling, a honeycomb-like structure subjected to compression load is modeled and then compared with experimental results. Moreover, the influence of the configurations and thickness distribution of the proposed structures on their energy absorption performance is comprehensively evaluated using finite element simulations. The results demonstrate that the proposed design approach effectively regulates the strain threshold to maintain the SMA within the constraint of maximum recoverable strain, resulting in a structural energy absorption capacity of 362 J/kg with a crushing force efficiency greater than 63%.
ISSN:2192-8258
1000-9345
2192-8258
DOI:10.1186/s10033-023-00918-1