Silver nanoparticles nucleated in NaOH-treated halloysite: a potential antimicrobial material
Despite all recent advances in medical treatments, infectious diseases remain dangerous. This has led to intensive scientific research on materials with antimicrobial properties. Silver nanoparticles (Ag-NPs) are a well-established solution in this area. The present work studied the nucleation of si...
Gespeichert in:
Veröffentlicht in: | Beilstein journal of nanotechnology 2021, Vol.12 (1), p.798-807 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Despite all recent advances in medical treatments, infectious diseases remain dangerous. This has led to intensive scientific research on materials with antimicrobial properties. Silver nanoparticles (Ag-NPs) are a well-established solution in this area. The present work studied the nucleation of silver on halloysite substrates modified by chemical treatment with NaOH. The resulting stabilized Ag-NPs were characterized by X-ray diffraction, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The nucleation was characterized by thermogravimetric analysis and differential scanning calorimetry. The antimicrobial properties of the Ag-NPs were investigated against
and
. The potential of the Ag-NPs for industrial application was tested by dispersing them into low-density polyethylene. The importance of the chemical affinity between matrix and additive was tested through coating the Ag-NPs with dodecanethiol, a non-polar surfactant. The resulting composites were characterized by scanning electron microscopy and in terms of surface antimicrobial activity. The results demonstrate that the Ag-NPs synthesized in this work are indeed antimicrobial, and that it is possible to imbue a polymeric matrix with the antimicrobial properties of Ag-NPs. |
---|---|
ISSN: | 2190-4286 2190-4286 |
DOI: | 10.3762/bjnano.12.63 |