On the quasiuniqueness of solutions of degenerate equations in Hilbert space
In this paper, we study the quasiuniqueness (i.e., f 1 ≐ f 2 if f 1 − f 2 is flat, the function f ( t ) being called flat if, for any K > 0, t − k f ( t ) → 0 as t → 0) for ordinary differential equations in Hilbert space. The case of inequalities is studied, too. The most important result of thi...
Gespeichert in:
Veröffentlicht in: | International journal of mathematics and mathematical sciences 1988-01, Vol.11 (1), p.129-142 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the quasiuniqueness (i.e.,
f
1
≐
f
2
if
f
1
−
f
2
is flat, the function
f
(
t
) being called flat if, for any
K
> 0,
t
−
k
f
(
t
) → 0 as
t
→ 0) for ordinary differential equations in Hilbert space. The case of inequalities is studied, too.
The most important result of this paper is this:
THEOREM 3. Let
B
(
t
) be a linear operator with domain
D
B
and
B
(
t
) =
B
1
(
t
) +
B
2
(
t
) where (
B
1
(
t
)
x
,
x
) is real and Re(
B
2
(
t
)
x
,
x
) = 0 for any
x
∈
D
B
. Let for any
x
∈
D
B
the following estimate hold:
urn:x-wiley:01611712:media:ijmm512093:ijmm512093-math-0001
urn:x-wiley:01611712:media:ijmm512093:ijmm512093-math-0002
. If
u
(
t
) is a smooth flat solution of the following inequality in the interval
t
∈
I
= (0, 1].
urn:x-wiley:01611712:media:ijmm512093:ijmm512093-math-0003
with non‐negative continuous function
ϕ
(
t
), then
u
(
t
) ≡ 0 in
I
. One example with self‐adjoint
B
(
t
) is given, too. |
---|---|
ISSN: | 0161-1712 1687-0425 |
DOI: | 10.1155/S0161171288000183 |