The Superiority of Quantum Strategy in 3-Player Prisoner’s Dilemma

In this paper, we extend the quantum game theory of Prisoner’s Dilemma to the N-player case. The final state of quantum game theory of N-player Prisoner’s Dilemma is derived, which can be used to investigate the payoff of each player. As demonstration, two cases (2-player and 3-player) are studied t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2021-06, Vol.9 (12), p.1443
Hauptverfasser: Dong, Zhiyuan, Wu, Ai-Guo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we extend the quantum game theory of Prisoner’s Dilemma to the N-player case. The final state of quantum game theory of N-player Prisoner’s Dilemma is derived, which can be used to investigate the payoff of each player. As demonstration, two cases (2-player and 3-player) are studied to illustrate the superiority of quantum strategy in the game theory. Specifically, the non-unique entanglement parameter is found to maximize the total payoff, which oscillates periodically. Finally, the optimal strategic set is proved to depend on the selection of initial states.
ISSN:2227-7390
2227-7390
DOI:10.3390/math9121443