The Superiority of Quantum Strategy in 3-Player Prisoner’s Dilemma
In this paper, we extend the quantum game theory of Prisoner’s Dilemma to the N-player case. The final state of quantum game theory of N-player Prisoner’s Dilemma is derived, which can be used to investigate the payoff of each player. As demonstration, two cases (2-player and 3-player) are studied t...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2021-06, Vol.9 (12), p.1443 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we extend the quantum game theory of Prisoner’s Dilemma to the N-player case. The final state of quantum game theory of N-player Prisoner’s Dilemma is derived, which can be used to investigate the payoff of each player. As demonstration, two cases (2-player and 3-player) are studied to illustrate the superiority of quantum strategy in the game theory. Specifically, the non-unique entanglement parameter is found to maximize the total payoff, which oscillates periodically. Finally, the optimal strategic set is proved to depend on the selection of initial states. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math9121443 |