Recent Advances on F-Doped Layered Transition Metal Oxides for Sodium Ion Batteries

With the development of social economy, using lithium-ion batteries in energy storage in industries such as large-scale electrochemical energy storage systems will cause lithium resources to no longer meet demand. As such, sodium ion batteries have become one of the effective alternatives to LIBs. M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2023-12, Vol.28 (24), p.8065
Hauptverfasser: Wang, Hao, Zhou, Lifeng, Cheng, Zhenyu, Liu, Liying, Wang, Yisong, Du, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the development of social economy, using lithium-ion batteries in energy storage in industries such as large-scale electrochemical energy storage systems will cause lithium resources to no longer meet demand. As such, sodium ion batteries have become one of the effective alternatives to LIBs. Many attempts have been carried out by researchers to achieve this, among which F-doping is widely used to enhance the electrochemical performance of SIBs. In this paper, we reviewed several types of transition metal oxide cathode materials, and found their electrochemical properties were significantly improved by F-doping. Moreover, the modification mechanism of F-doping has also been summed up. Therefore, the application and commercialization of SIBs in the future is summarized in the ending of the review.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules28248065