Large-scale DNA-based phenotypic recording and deep learning enable highly accurate sequence-function mapping
Predicting effects of gene regulatory elements (GREs) is a longstanding challenge in biology. Machine learning may address this, but requires large datasets linking GREs to their quantitative function. However, experimental methods to generate such datasets are either application-specific or technic...
Gespeichert in:
Veröffentlicht in: | Nature communications 2020-07, Vol.11 (1), p.3551-3551, Article 3551 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Predicting effects of gene regulatory elements (GREs) is a longstanding challenge in biology. Machine learning may address this, but requires large datasets linking GREs to their quantitative function. However, experimental methods to generate such datasets are either application-specific or technically complex and error-prone. Here, we introduce DNA-based phenotypic recording as a widely applicable, practicable approach to generate large-scale sequence-function datasets. We use a site-specific recombinase to directly record a GRE’s effect in DNA, enabling readout of both sequence and quantitative function for extremely large GRE-sets via next-generation sequencing. We record translation kinetics of over 300,000 bacterial ribosome binding sites (RBSs) in >2.7 million sequence-function pairs in a single experiment. Further, we introduce a deep learning approach employing ensembling and uncertainty modelling that predicts RBS function with high accuracy, outperforming state-of-the-art methods. DNA-based phenotypic recording combined with deep learning represents a major advance in our ability to predict function from genetic sequence.
Current methods to generate sequence-function data at large scale are either technically complex or limited to specific applications. Here the authors introduce DNA-based phenotypic recording to overcome these limitations and enable deep learning for accurate prediction of function from sequence. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-020-17222-4 |