Analyzing Biomedical Datasets with Symbolic Tree Adaptive Resonance Theory

Biomedical datasets distill many mechanisms of human diseases, linking diseases to genes and phenotypes (signs and symptoms of disease), genetic mutations to altered protein structures, and altered proteins to changes in molecular functions and biological processes. It is desirable to gain new insig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information (Basel) 2024-02, Vol.15 (3), p.125
Hauptverfasser: Petrenko, Sasha, Hier, Daniel B, Bone, Mary A, Obafemi-Ajayi, Tayo, Timpson, Erik J, Marsh, William E, Speight, Michael, Wunsch, Donald C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biomedical datasets distill many mechanisms of human diseases, linking diseases to genes and phenotypes (signs and symptoms of disease), genetic mutations to altered protein structures, and altered proteins to changes in molecular functions and biological processes. It is desirable to gain new insights from these data, especially with regard to the uncovering of hierarchical structures relating disease variants. However, analysis to this end has proven difficult due to the complexity of the connections between multi-categorical symbolic data. This article proposes symbolic tree adaptive resonance theory (START), with additional supervised, dual-vigilance (DV-START), and distributed dual-vigilance (DDV-START) formulations, for the clustering of multi-categorical symbolic data from biomedical datasets by demonstrating its utility in clustering variants of Charcot–Marie–Tooth disease using genomic, phenotypic, and proteomic data.
ISSN:2078-2489
2078-2489
DOI:10.3390/info15030125