Conditional knockout mouse model reveals a critical role of peroxiredoxin 1 in oral leukoplakia carcinogenesis

Peroxiredoxin 1 (Prx1) is an antioxidant protein that may promote the carcinogenesis in oral leukoplakia (OLK). To investigate the effect of Prx1 on the oral mucosal epithelium of OLK, we generated a Prx1 conditional knockout (cKO) mouse model. The mRNA and gRNA were generated using the clustered re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2024-05, Vol.10 (10), p.e31227, Article e31227
Hauptverfasser: Li, Lingyu, Li, Jing, Lu, Yunping, Li, Wenjing, Yang, Jing, Wang, Min, Miao, Congcong, Tian, Zhenchuan, Zhang, Min, Tang, Xiaofei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Peroxiredoxin 1 (Prx1) is an antioxidant protein that may promote the carcinogenesis in oral leukoplakia (OLK). To investigate the effect of Prx1 on the oral mucosal epithelium of OLK, we generated a Prx1 conditional knockout (cKO) mouse model. The mRNA and gRNA were generated using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) technique. An infusion cloning method was used to construct a homologous recombination vector. To obtain the F0 generation mice, fertilized eggs of C57BL/6J mice were microinjected with Cas9 mRNA, gRNA, and a donor vector. Polymerase chain reaction (PCR) amplification and sequencing were used to identify F1 generation mice. Using the cyclization recombination-enzyme-locus of the X-overP1 (Cre-loxP) system, we created a Prx1 cKO mouse model, and the effectiveness of the knockout was confirmed through immunohistochemistry. We examined the influence of Prx1 knockout on the occurrence of OLK in mice by constructing a model of tongue mucosa carcinogenesis induced by 4-nitroquinoline-1-oxide (4NQO). Prx1 modification was present in the F1 generation, as evidenced by PCR amplification and sequencing. Prx1flox/flox: Cre + mice exhibited normal growth and fertility. Immunohistochemical analysis revealed that tongue epithelial cells in Prx1flox/flox: Cre + mice displayed a distinct deletion of Prx1. An examination of the heart, liver, spleen, lung, and kidney tissues revealed no visible histological changes. Histological analysis showed a reduction in the occurrence of the malignant transformation of OLK in the tongue tissues of Prx1flox/flox: Cre + mice. Ki67 immunostaining showed that Prx1 knockout significantly inhibited cell proliferation in the tongue epithelial. Our research developed a conditional knockout mouse model for Prx1. The obtained results provide insights into the function of Prx1 in the development of oral cancer and emphasize its potential as a therapeutic target for precancerous oral lesions.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e31227