The Electrostatic Induction Characteristics of SiC/SiC Particles in Aero-Engine Exhaust Gases: A Simulated Experiment and Analysis

This study investigates the electrostatic induction characteristics of silicon carbide-fiber-reinforced silicon carbide (SiC/SiC) particles within aero-engine exhaust gases using a dedicated J20 turbojet engine experimental platform. Our comprehensive experiments explored the electrostatic propertie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aerospace 2024-06, Vol.11 (6), p.481
Hauptverfasser: Liu, Yan, Liu, Zhenzhen, Bai, Fang, Zuo, Hongfu, Guo, Zezhong, Li, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigates the electrostatic induction characteristics of silicon carbide-fiber-reinforced silicon carbide (SiC/SiC) particles within aero-engine exhaust gases using a dedicated J20 turbojet engine experimental platform. Our comprehensive experiments explored the electrostatic properties of SiC/SiC particles under varying engine operational states—specifically focusing on different thermal conditions, particle mass concentrations, particle sizes, and exhaust gas velocities compared to those of common engine exhaust constituents like carbon (C) and iron (Fe) particles. The results demonstrate that SiC/SiC particles consistently maintain a stable positive charge across varied temperatures, significantly diverging from the behaviors of carbon (C) and iron (Fe) particles. Additionally, our findings reveal that higher mass concentrations of SiC/SiC particles, smaller particle sizes within a certain range, and greater exhaust gas velocities of the aero-engine all lead to increased particle charge and more pronounced electrostatic induction characteristics. This study highlights the potential of electrostatic sensors for the early detection and diagnosis of failures in aero-engines, offering crucial insights into the development of more resilient real-time aero-engine health monitoring systems.
ISSN:2226-4310
2226-4310
DOI:10.3390/aerospace11060481