Determining the Role of Oxygen in Obtaining Long-Term Stable Superhydrophilic Surfaces on Metals Treated with a Femtosecond Laser

Laser processing is a simple way to obtain hydrophobic or even superhydrophobic properties of metal surfaces. However, preparation of superhydrophilic surfaces by this method, the properties of which do not change under the influence of various factors, remains a difficult task. In this work, we sho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2023-09, Vol.8 (37), p.33904-33911
Hauptverfasser: Ialyshev, Vadim, Alnaser, Ali S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Laser processing is a simple way to obtain hydrophobic or even superhydrophobic properties of metal surfaces. However, preparation of superhydrophilic surfaces by this method, the properties of which do not change under the influence of various factors, remains a difficult task. In this work, we show that with increasing laser power, the degree of oxidation of the treated metal surface also increases. As a result, highly oxidized samples showed highly stable superhydrophilic properties. A Janus membrane fabricated from a stainless steel mesh with asymmetric hydrophilic-hydrophobic wettability demonstrated stable water diode properties. In addition, it was found that during the examination of sample surfaces by Raman spectroscopy, organic compounds adsorbed on the hydrophobic surface were decomposed by the laser of the spectrometer, which imposes limitations on the laser power when using this method in characterizing hydrophobic surfaces of metals fabricated by laser processing.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.3c04618