A Simple Parallel Solution Method for the Navier–Stokes Cahn–Hilliard Equations

We present a discretization method of the Navier–Stokes Cahn–Hilliard equations which offers an impressing simplicity, making it easy to implement a scalable parallel code from scratch. The method is based on a special pressure projection scheme with incomplete pressure iterations. The resulting sch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2020-08, Vol.8 (8), p.1224
Hauptverfasser: Adam, Nadja, Franke, Florian, Aland, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a discretization method of the Navier–Stokes Cahn–Hilliard equations which offers an impressing simplicity, making it easy to implement a scalable parallel code from scratch. The method is based on a special pressure projection scheme with incomplete pressure iterations. The resulting scheme admits solution by an explicit Euler method. Hence, all unknowns decouple, which enables a very simple implementation. This goes along with the opportunity of a straightforward parallelization, for example, by few lines of Open Multi-Processing (OpenMP) or Message Passing Interface (MPI) routines. Using a standard benchmark case of a rising bubble, we show that the method provides accurate results and good parallel scalability.
ISSN:2227-7390
2227-7390
DOI:10.3390/math8081224