On Nil-Symmetric Rings

The concept of nil-symmetric rings has been introduced as a generalization of symmetric rings and a particular case of nil-semicommutative rings. A ring R is called right (left) nil-symmetric if, for a,b,c∈R, where a,b are nilpotent elements, abc=0 (cab=0) implies acb=0. A ring is called nil-symmetr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematics (Hidawi) 2014-01, Vol.2014 (2014), p.1-7
Hauptverfasser: Chakraborty, Uday Shankar, Das, Krishnendu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The concept of nil-symmetric rings has been introduced as a generalization of symmetric rings and a particular case of nil-semicommutative rings. A ring R is called right (left) nil-symmetric if, for a,b,c∈R, where a,b are nilpotent elements, abc=0 (cab=0) implies acb=0. A ring is called nil-symmetric if it is both right and left nil-symmetric. It has been shown that the polynomial ring over a nil-symmetric ring may not be a right or a left nil-symmetric ring. Further, it is also proved that if R is right (left) nil-symmetric, then the polynomial ring R[x] is a nil-Armendariz ring.
ISSN:2314-4629
2314-4785
DOI:10.1155/2014/483784