On Nil-Symmetric Rings
The concept of nil-symmetric rings has been introduced as a generalization of symmetric rings and a particular case of nil-semicommutative rings. A ring R is called right (left) nil-symmetric if, for a,b,c∈R, where a,b are nilpotent elements, abc=0 (cab=0) implies acb=0. A ring is called nil-symmetr...
Gespeichert in:
Veröffentlicht in: | Journal of mathematics (Hidawi) 2014-01, Vol.2014 (2014), p.1-7 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The concept of nil-symmetric rings has been introduced as a generalization of symmetric rings and a particular case of nil-semicommutative rings. A ring R is called right (left) nil-symmetric if, for a,b,c∈R, where a,b are nilpotent elements, abc=0 (cab=0) implies acb=0. A ring is called nil-symmetric if it is both right and left nil-symmetric. It has been shown that the polynomial ring over a nil-symmetric ring may not be a right or a left nil-symmetric ring. Further, it is also proved that if R is right (left) nil-symmetric, then the polynomial ring R[x] is a nil-Armendariz ring. |
---|---|
ISSN: | 2314-4629 2314-4785 |
DOI: | 10.1155/2014/483784 |