miR-503/Apelin-12 mediates high glucose-induced microvascular endothelial cells injury via JNK and p38MAPK signaling pathway
Diabetic patients are often accompanied by complications of diabetic vascular disease, which could lead to heart failure or stroke. In this work, we explored the role of miR-503/Apelin-12 in diabetic angiopathy (DA) in vitro. ELISA and qPCR were applied to assess the expression of miR-503 and Apelin...
Gespeichert in:
Veröffentlicht in: | Regenerative therapy 2020-06, Vol.14, p.111-118 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Diabetic patients are often accompanied by complications of diabetic vascular disease, which could lead to heart failure or stroke. In this work, we explored the role of miR-503/Apelin-12 in diabetic angiopathy (DA) in vitro.
ELISA and qPCR were applied to assess the expression of miR-503 and Apelin-12 in high glucose (HG)-treated microvascular endothelial cells (HMEC-1). The effects of miR-503 on apoptosis, inflammation and oxidative stress were assessed by flow cytometry, western blotting, qPCR, and ELISA. The interaction between miR-503 and Apelin-12 was evaluated by dual-luciferase reporter assay, qPCR and ELISA, respectively. Western blotting was performed to examine the function of miR-503/Apelin-12 on JNK and p38MAPK activation.
MiR-503 was markedly increased and Apelin-12 was decreased in HG-treated HMEC-1 cells. MiR-503 inhibitor significantly assuaged apoptosis, inflammation and oxidative stress in HMEC-1 cells. MiR-503 could specifically bind to the 3′UTR of Apelin and inversely downregulate Apelin-12 expression. Furthermore, Apelin-12 suppressed apoptosis, inflammation and oxidative stress. Inhibition of Apelin-12 could partially reverse the decrease of p-JNK and p-p38 expression levels induced by miR-503 suppression.
In HG-induced microvascular cells injury, miR-503/Apelin-12 enhances inflammation and oxidative stress by regulating JNK and p38MAPK pathway, suggesting a potential therapeutic target for DA. |
---|---|
ISSN: | 2352-3204 2352-3204 |
DOI: | 10.1016/j.reth.2019.12.002 |