Optimal L(3,2,1)-labeling of trees
Given a graph G, an [Formula: see text]-labeling of G is an assignment f of non-negative integers (labels) to the vertices of G such that [Formula: see text] if [Formula: see text] (i = 1, 2, 3). For a non-negative integer k, a k-[Formula: see text]-labeling is an [Formula: see text]-labeling such t...
Gespeichert in:
Veröffentlicht in: | AKCE international journal of graphs and combinatorics 2024-09, Vol.21 (3), p.310-314 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a graph G, an [Formula: see text]-labeling of G is an assignment f of non-negative integers (labels) to the vertices of G such that [Formula: see text] if [Formula: see text] (i = 1, 2, 3). For a non-negative integer k, a k-[Formula: see text]-labeling is an [Formula: see text]-labeling such that no label is greater than k. The [Formula: see text]-labeling number of G, denoted by [Formula: see text], is the smallest number k such that G has a k-[Formula: see text]-labeling. Chia proved that the [Formula: see text]-labeling number of a tree T with maximum degree Δ can have one of three values: [Formula: see text] and [Formula: see text]. This paper gives some sufficient conditions for [Formula: see text] and [Formula: see text], respectively. As a result, the [Formula: see text]-labeling numbers of complete m-ary trees, spiders and banana trees are completely determined. |
---|---|
ISSN: | 0972-8600 2543-3474 |
DOI: | 10.1080/09728600.2024.2358691 |