Open-Source Code for Radium-Derived Ocean-Groundwater Modeling: Project Open RaDOM
Radium has been commonly used as a tracer of submarine groundwater discharge to the ocean and embankments, as radium activities are commonly input into box models to calculate a groundwater flux. Similarly, isotopes of radium (Ra224, Ra223, Ra226, Ra228) have been used to calculate water mass ages,...
Gespeichert in:
Veröffentlicht in: | Hydrology 2022-06, Vol.9 (6), p.106 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Radium has been commonly used as a tracer of submarine groundwater discharge to the ocean and embankments, as radium activities are commonly input into box models to calculate a groundwater flux. Similarly, isotopes of radium (Ra224, Ra223, Ra226, Ra228) have been used to calculate water mass ages, which have been used as a proxy for residence times. Less commonly, radium and other tracers have been utilized in mixing models to determine the relative contribution of groundwater to a marine system. In the literature, all of these methods have almost exclusively been solved using analytical methods prone to large errors and other issues. Project Open RaDOM, introduced here, is a collection of open-source R scripts that numerically solve for groundwater flux, residence time, and relative contribution of groundwater to coastal systems. Solving these models numerically allows for over-constrained systems to increase their accuracy and force real solutions. The scripts are written in a way to make them user-friendly, even to scientists unfamiliar with R. This communication includes a description of the scripts in Project Open RaDOM, a discussion of examples in the literature, and case studies of the scripts using previously published data. |
---|---|
ISSN: | 2306-5338 2306-5338 |
DOI: | 10.3390/hydrology9060106 |