The Influence of Electrode Design on Detecting the Effects of Ferric Ammonium Citrate (FAC) on Pre-Osteoblast through Electrical Cell-Substrate Impedance Sensing (ECIS)
Detection sensitivity is a crucial factor in the application of ECIS sensors. For these biosensors, the electrode configuration has a direct impact on sensitivity, yet few studies on monopolar electrodes have been reported. In this study, ECIS sensor arrays, which have a series of working electrode...
Gespeichert in:
Veröffentlicht in: | Biosensors (Basel) 2023-02, Vol.13 (3), p.322 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Detection sensitivity is a crucial factor in the application of ECIS sensors. For these biosensors, the electrode configuration has a direct impact on sensitivity, yet few studies on monopolar electrodes have been reported. In this study, ECIS sensor arrays, which have a series of working electrode configuration with a wide diameter range and different electrode number, were fabricated to monitor living osteoblast-like MC3T3-E1 cells. The experimental results revealed that when the electrode diameter was larger than 25 μm, electrodes with smaller diameter and number yielded higher impedance values and generated more impedance shift to cell status change. The membrane capacitance obtained by equivalent circuit fitting was at the same level. When the electrode diameter was even smaller, the results in detection of cell monolayer were opposite, and there was no distinct relationship between impedance and membrane capacitance shift to cell status change and electrode geometry. The proposed sensor chip, allowing for a sustained and stable detection of cellular impedance, provides the basis for the selection of the electrode configuration of monopolar electrodes. The test results of electrodes with a diameter of 25 μm and lower indicated the possibility of single cell impedance measurement, which can provide unique insight into the heterogeneous electrical behavior of cells, and, in this case, the electrode size should be close to the cell size. |
---|---|
ISSN: | 2079-6374 2079-6374 |
DOI: | 10.3390/bios13030322 |