Turbulent hydrodynamics in strongly correlated Kagome metals

A current challenge in condensed matter physics is the realization of strongly correlated, viscous electron fluids. These fluids can be described by holography, that is, by mapping them onto a weakly curved gravitational theory via gauge/gravity duality. The canonical system considered for realizati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-08, Vol.11 (1), p.3997-3997, Article 3997
Hauptverfasser: Di Sante, Domenico, Erdmenger, Johanna, Greiter, Martin, Matthaiakakis, Ioannis, Meyer, René, Fernández, David Rodríguez, Thomale, Ronny, van Loon, Erik, Wehling, Tim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A current challenge in condensed matter physics is the realization of strongly correlated, viscous electron fluids. These fluids can be described by holography, that is, by mapping them onto a weakly curved gravitational theory via gauge/gravity duality. The canonical system considered for realizations has been graphene. In this work, we show that Kagome systems with electron fillings adjusted to the Dirac nodes provide a much more compelling platform for realizations of viscous electron fluids, including non-linear effects such as turbulence. In particular, we find that in Scandium Herbertsmithite, the fine-structure constant, which measures the effective Coulomb interaction, is enhanced by a factor of about 3.2 as compared to graphene. We employ holography to estimate the ratio of the shear viscosity over the entropy density in Sc-Herbertsmithite, and find it about three times smaller than in graphene. These findings put the turbulent flow regime described by holography within the reach of experiments. Viscous electron fluids are predicted in strongly correlated systems but remain challenging to realize. Here, the authors predict enhanced effective Coulomb interaction and reduced ratio of the shear viscosity over entropy density in a Kagome metal, inferring turbulent flow of viscous electron fluids.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-17663-x