Network medicine informed multiomics integration identifies drug targets and repurposable medicines for Amyotrophic Lateral Sclerosis

Amyotrophic Lateral Sclerosis (ALS) is a devastating, immensely complex neurodegenerative disease by lack of effective treatments. We developed a network medicine methodology via integrating human brain multi-omics data to prioritize drug targets and repurposable treatments for ALS. We leveraged non...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPJ systems biology and applications 2024-11, Vol.10 (1), p.128-9, Article 128
Hauptverfasser: Yu, Mucen, Xu, Jielin, Dutta, Ranjan, Trapp, Bruce, Pieper, Andrew A., Cheng, Feixiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Amyotrophic Lateral Sclerosis (ALS) is a devastating, immensely complex neurodegenerative disease by lack of effective treatments. We developed a network medicine methodology via integrating human brain multi-omics data to prioritize drug targets and repurposable treatments for ALS. We leveraged non-coding ALS loci effects from genome-wide associated studies (GWAS) on human brain expression quantitative trait loci (QTL) (eQTL), protein QTL (pQTL), splicing QTL (sQTL), methylation QTL (meQTL), and histone acetylation QTL (haQTL). Using a network-based deep learning framework, we identified 105 putative ALS-associated genes enriched in known ALS pathobiological pathways. Applying network proximity analysis of predicted ALS-associated genes and drug-target networks under the human protein-protein interactome (PPI) model, we identified potential repurposable drugs (i.e., Diazoxide and Gefitinib) for ALS. Subsequent validation established preclinical evidence for top-prioritized drugs. In summary, we presented a network-based multi-omics framework to identify drug targets and repurposable treatments for ALS and other neurodegenerative disease if broadly applied.
ISSN:2056-7189
2056-7189
DOI:10.1038/s41540-024-00449-y