On uniformly resolvable {K_1,2, K_1,3}-designs
Given a collection of graphs H, a uniformly resolvable H-design of order v is a decomposition of the edges of K^v into isomorphic copies of graphs from H (also called blocks) in such a way that all blocks in a given parallel class are isomorphic to the same graph from H. We consider the case H={K_1,...
Gespeichert in:
Veröffentlicht in: | Atti della Accademia peloritana dei pericolanti. Classe I di scienze fis., mat. e naturali mat. e naturali, 2018-01, Vol.96 (S2), p.A9 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a collection of graphs H, a uniformly resolvable H-design of order v is a decomposition of the edges of K^v into isomorphic copies of graphs from H (also called blocks) in such a way that all blocks in a given parallel class are isomorphic to the same graph from H. We consider the case H={K_1,2, K_1,3} and prove that the necessary conditions on the existence of such designs are also sufficient. |
---|---|
ISSN: | 0365-0359 1825-1242 |
DOI: | 10.1478/AAPP.96S2A9 |