On uniformly resolvable {K_1,2, K_1,3}-designs

Given a collection of graphs H, a uniformly resolvable H-design of order v is a decomposition of the edges of K^v into isomorphic copies of graphs from H (also called blocks) in such a way that all blocks in a given parallel class are isomorphic to the same graph from H. We consider the case H={K_1,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atti della Accademia peloritana dei pericolanti. Classe I di scienze fis., mat. e naturali mat. e naturali, 2018-01, Vol.96 (S2), p.A9
Hauptverfasser: Giovanni Lo Faro, Salvatore Milici, Antoinette Tripodi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a collection of graphs H, a uniformly resolvable H-design of order v is a decomposition of the edges of K^v into isomorphic copies of graphs from H (also called blocks) in such a way that all blocks in a given parallel class are isomorphic to the same graph from H. We consider the case H={K_1,2, K_1,3} and prove that the necessary conditions on the existence of such designs are also sufficient.
ISSN:0365-0359
1825-1242
DOI:10.1478/AAPP.96S2A9