Numerical analysis of 3-D MHD hybrid nanofluid over a rotational disk in presence of thermal radiation with Joule heating and viscous dissipation effects using Lobatto IIIA technique
In this research, the phenomenon of heat and mass transfer in 3D radiative flow of hybrid nanofluid over a rotational disk is investigated. Nanoparticles of Al2O3 and Cu are being used with water (H2O) as base fluid. The mathematical flow model in terms of PDEs is constructed by considering the heat...
Gespeichert in:
Veröffentlicht in: | Alexandria engineering journal 2021-08, Vol.60 (4), p.3605-3619 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this research, the phenomenon of heat and mass transfer in 3D radiative flow of hybrid nanofluid over a rotational disk is investigated. Nanoparticles of Al2O3 and Cu are being used with water (H2O) as base fluid. The mathematical flow model in terms of PDEs is constructed by considering the heat transport mechanism due to Joule heating and viscous dissipation. This set of PDEs is converted into a system of ODEs by introducing the proper similarity transformations, which is then solved with the computational strength of Lobatto IIIA method. Demonstrations of graphical and numerical data are offered to examine the variation of velocity and thermal field against various physical constraints. The variable trend of heat transfer rate and skin friction coefficient through numerical data are also investigated. It is found that rate of heat transfer is proportional to Brinkman number, magnetic effect and concentration of nanoparticles. Achieved accuracy in term of relative error upto the level of 1e-14 shows the reliability and worth of solution methodology. |
---|---|
ISSN: | 1110-0168 |
DOI: | 10.1016/j.aej.2021.02.015 |