Investigating the Occurrence of Soil-Transmitted Parasites Contaminating Soil, Vegetables, and Green Fodder in the East of Nile Delta, Egypt

Background. Food-borne parasites are major sources of human and animal illness, posing severe health risks in places with contaminated soil, poor water quality, cleanliness, and poor sanitation. The usage of untreated organic fertilizers arising from the excreta of the parasites’ definitive hosts ei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of parasitology research 2023, Vol.2023, p.6300563-16
Hauptverfasser: Yahia, Samah H., Etewa, Samia E., Al Hoot, Abd Allah A., Arafa, Salwa Z., Saleh, Nesreen S., Sarhan, Mohamed H., Rashad, Suzan I., Hassan, Shimaa S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background. Food-borne parasites are major sources of human and animal illness, posing severe health risks in places with contaminated soil, poor water quality, cleanliness, and poor sanitation. The usage of untreated organic fertilizers arising from the excreta of the parasites’ definitive hosts either man or animal pollutes the agricultural soil and is reflected in its products of vegetables and green fodders causing serious health problems. Therefore, to the best of our knowledge, this will be the first study that investigated the combination of parasitic contamination of the agricultural soil and its products of raw eaten vegetables and green fodder in East Nile Delta, Egypt. Aim. The purpose of this study was to investigate the type and degree of contamination caused by parasites in regularly used raw vegetables, green fodder, and soil samples collected from open fields in Egypt’s East Nile Delta. Study Procedures. A cross-sectional study comprised a simple random collection of 400 soil samples, 180 green fodder samples, and as well as 400 vegetable samples, including lettuce, radish, coriander, parsley, dill, watercress, tomatoes, green pepper, cucumber, and carrot, that were gathered throughout one year period from January to December 2021 to represent all seasons (winter, spring, summer, and autumn). The research locations were chosen from various open green fields and farming regions in Egypt’s East Nile Delta producing ready-to-eat vegetables for human consumptions and planting green fodder for animal feeding. Concentrations, including sedimentation, and flotation, and staining techniques were used to recover the greatest number of parasitic life forms. The parasitic structures discovered were identified using biometric and imaging data and compared with known parasite morphology. Statistical analysis was performed with the SPSS software version 22 (IBM, Chicago, IL, USA). Data were presented in numbers and percentages. P-values equal to or less than 0.05 were considered to be statistically significant. The difference in parasitic contamination among the different categories was compared using the chi-square test. Results. In this investigation, 243 out of 400 soil samples (60.7%) confirmed positive for parasitic contamination (P
ISSN:2090-0023
2090-0031
DOI:10.1155/2023/6300563