Monitoring Mining Surface Subsidence with Multi-Temporal Three-Dimensional Unmanned Aerial Vehicle Point Cloud

Long-term and high-intensity coal mining has led to the increasingly serious surface subsidence and environmental problems. Surface subsidence monitoring plays an important role in protecting the ecological environment of the mining area and the sustainable development of modern coal mines. The deve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2023-01, Vol.15 (2), p.374
Hauptverfasser: Liu, Xiaoyu, Zhu, Wu, Lian, Xugang, Xu, Xuanyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Long-term and high-intensity coal mining has led to the increasingly serious surface subsidence and environmental problems. Surface subsidence monitoring plays an important role in protecting the ecological environment of the mining area and the sustainable development of modern coal mines. The development of surveying technology has promoted the acquisition of high-resolution terrain data. The combination of an unmanned aerial vehicle (UAV) point cloud and the structure from motion (SfM) method has shown the potential of collecting multi-temporal high-resolution terrain data in complex or inaccessible environments. The difference of the DEM (DoD) is the main method to obtain the surface subsidence in mining areas. However, the obtained digital elevation model (DEM) needs to interpolate the point cloud into the grid, and this process may introduce errors in complex natural topographic environments. Therefore, a complete three-dimensional change analysis is required to quantify the surface change in complex natural terrain. In this study, we propose a quantitative analysis method of ground subsidence based on three-dimensional point cloud. Firstly, the Monte Carlo simulation statistical analysis was adopted to indirectly evaluate the performance of direct georeferencing photogrammetric products. After that, the operation of co-registration was carried out to register the multi-temporal UAV dense matching point cloud. Finally, the model-to-model cloud comparison (M3C2) algorithm was used to quantify the surface change and reveal the spatio-temporal characteristics of surface subsidence. In order to evaluate the proposed method, four periods of multi-temporal UAV photogrammetric data and a period of airborne LiDAR point cloud data were collected in the Yangquan mining area, China, from 2020 to 2022. The 3D precision map of a sparse point cloud generated by Monte Carlo simulation shows that the average precision in X, Y and Z directions is 44.80 mm, 45.22 and 63.60 mm, respectively. The standard deviation range of the M3C2 distance calculated by multi-temporal data in the stable area is 0.13–0.19, indicating the consistency of multi-temporal photogrammetric data of UAV. Compared with DoD, the dynamic moving basin obtained by the M3C2 algorithm based on the 3D point cloud obtained more real surface deformation distribution. This method has high potential in monitoring terrain change in remote areas, and can provide a reference for monitoring similar objects suc
ISSN:2072-4292
2072-4292
DOI:10.3390/rs15020374