An Injectable Hydrogel for Enhanced FeGA-Based Chemodynamic Therapy by Increasing Intracellular Acidity

Hydroxyl radical (•OH)-mediated chemodynamic therapy (CDT) is an emerging antitumor strategy, however, acid deficiency in the tumor microenvironment (TME) hampers its efficacy. In this study, a new injectable hydrogel was developed as an acid-enhanced CDT system (AES) for improving tumor therapy. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in oncology 2021-09, Vol.11, p.750855-750855
Hauptverfasser: Zeng, Wen, Jiang, Dazhen, Liu, Zeming, Suo, Weilong, Wang, Ziqi, Zhu, Daoming, Huang, Qinqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydroxyl radical (•OH)-mediated chemodynamic therapy (CDT) is an emerging antitumor strategy, however, acid deficiency in the tumor microenvironment (TME) hampers its efficacy. In this study, a new injectable hydrogel was developed as an acid-enhanced CDT system (AES) for improving tumor therapy. The AES contains iron-gallic acid nanoparticles (FeGA) and α-cyano-4-hydroxycinnamic acid (α-CHCA). FeGA converts near-infrared laser into heat, which results in agarose degradation and consequent α-CHCA release. Then, as a monocarboxylic acid transporter inhibitor, α-CHCA can raise the acidity in TME, thus contributing to an increase in ·OH-production in FeGA-based CDT. This approach was found effective for killing tumor cells both and , demonstrating good therapeutic efficacy. investigations also revealed that AES had outstanding biocompatibility and stability. This is the first study to improve FeGA-based CDT by increasing intracellular acidity. The AES system developed here opens new opportunities for effective tumor treatment.
ISSN:2234-943X
2234-943X
DOI:10.3389/fonc.2021.750855