First steps in synthetic guarded domain theory: step-indexing in the topos of trees
We present the topos S of trees as a model of guarded recursion. We study the internal dependently-typed higher-order logic of S and show that S models two modal operators, on predicates and types, which serve as guards in recursive definitions of terms, predicates, and types. In particular, we show...
Gespeichert in:
Veröffentlicht in: | Logical methods in computer science 2012-01, Vol.8, Issue 4 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present the topos S of trees as a model of guarded recursion. We study the
internal dependently-typed higher-order logic of S and show that S models two
modal operators, on predicates and types, which serve as guards in recursive
definitions of terms, predicates, and types. In particular, we show how to
solve recursive type equations involving dependent types. We propose that the
internal logic of S provides the right setting for the synthetic construction
of abstract versions of step-indexed models of programming languages and
program logics. As an example, we show how to construct a model of a
programming language with higher-order store and recursive types entirely
inside the internal logic of S. Moreover, we give an axiomatic categorical
treatment of models of synthetic guarded domain theory and prove that, for any
complete Heyting algebra A with a well-founded basis, the topos of sheaves over
A forms a model of synthetic guarded domain theory, generalizing the results
for S. |
---|---|
ISSN: | 1860-5974 1860-5974 |
DOI: | 10.2168/LMCS-8(4:1)2012 |