Using Modeling to Select the Type of Microwave Field Emitter for Dense-Layer Grain Dryers
The microwave field is used for drying and disinfecting grains during the pre-sowing seed treatment. The use of a microwave field in these installations leads to an increase in their productivity and a decrease in the energy consumed by them. In grain dryers, where the grain moves in a dense layer w...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2023-08, Vol.13 (16), p.9070 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The microwave field is used for drying and disinfecting grains during the pre-sowing seed treatment. The use of a microwave field in these installations leads to an increase in their productivity and a decrease in the energy consumed by them. In grain dryers, where the grain moves in a dense layer without being loosened, one of the challenges in using microwave fields is ensuring sufficient uniformity of the field distribution. In this article, waveguide design options that introduce microwave radiation into the grain layer are discussed. The objective of this study was to use application software to find the optimum type of transmitter from the three options presented. A mathematical simulation of the electromagnetic field distribution was performed with the use of CST Microwave Studio software 2019 in order to evaluate and compare horn-type, rectangular, and semicircular waveguides. The data on the standing wave ratio and radiation efficiency of these types of waveguides have been reported. The specific features of the microwave electromagnetic field distribution and radiation power in the output of these waveguides have been described. The results of mathematical simulations revealed that semicircular waveguides with slot-type radiators are preferable for processing dense grain layers. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app13169070 |