New generalized Pólya–Szegö and Čebyšev type inequalities with general kernel and measure

It is always attractive and motivating to acquire the generalizations of known results. In this article, we introduce a new class C ( h ) of functions which can be represented in a form of integral transforms involving general kernel with σ -finite measure. We obtain some new Pólya–Szegö and Čebyšev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations 2020-12, Vol.2020 (1), p.1-20, Article 672
Hauptverfasser: Iqbal, S., Samraiz, M., Abdeljawad, Thabet, Nisar, Kottakkaran Sooppy, Rahman, G., Adil Khan, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is always attractive and motivating to acquire the generalizations of known results. In this article, we introduce a new class C ( h ) of functions which can be represented in a form of integral transforms involving general kernel with σ -finite measure. We obtain some new Pólya–Szegö and Čebyšev type inequalities as generalizations to the previously proved ones for different fractional integrals including fractional integral of a function with respect to another function capturing Riemann–Liouville integrals, Hadamard fractional integrals, Katugampola fractional integral operators, and conformable fractional integrals. This new idea shall motivate the researchers to prove the results over a measure space with general kernels instead of special kernels.
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-020-03134-6