Application of a Novel Multiscale Global Graph Convolutional Neural Network to Improve the Accuracy of Forest Type Classification Using Aerial Photographs
The accurate classification of forest types is critical for sustainable forest management. In this study, a novel multiscale global graph convolutional neural network (MSG-GCN) was compared with random forest (RF), U-Net, and U-Net++ models in terms of the classification of natural mixed forest (NMX...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2023-02, Vol.15 (4), p.1001 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The accurate classification of forest types is critical for sustainable forest management. In this study, a novel multiscale global graph convolutional neural network (MSG-GCN) was compared with random forest (RF), U-Net, and U-Net++ models in terms of the classification of natural mixed forest (NMX), natural broadleaved forest (NBL), and conifer plantation (CP) using very high-resolution aerial photographs from the University of Tokyo Chiba Forest in central Japan. Our MSG-GCN architecture is novel in the following respects: The convolutional kernel scale of the encoder is unlike those of other models; local attention replaces the conventional U-Net++ skip connection; a multiscale graph convolutional neural block is embedded into the end layer of the encoder module; and various decoding layers are spliced to preserve high- and low-level feature information and to improve the decision capacity for boundary cells. The MSG-GCN achieved higher classification accuracy than other state-of-the-art (SOTA) methods. The classification accuracy in terms of NMX was lower compared with NBL and CP. The RF method produced severe salt-and-pepper noise. The U-Net and U-Net++ methods frequently produced error patches and the edges between different forest types were rough and blurred. In contrast, the MSG-GCN method had fewer misclassification patches and showed clear edges between different forest types. Most areas misclassified by MSG-GCN were on edges, while misclassification patches were randomly distributed in internal areas for U-Net and U-Net++. We made full use of artificial intelligence and very high-resolution remote sensing data to create accurate maps to aid forest management and facilitate efficient and accurate forest resource inventory taking in Japan. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs15041001 |