Aerodynamic Shape Optimization of an Aircraft Propulsor Air Intake with Boundary Layer Ingestion

The growth of the airline industry has highlighted the need for more environmentally conscious aviation, leading to the conceptualization of more fuel-efficient aircraft. One concept that has received significant attention and has been associated with improved fuel efficiency is the boundary layer i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics 2022-09, Vol.3 (3), p.1123-1144
Hauptverfasser: Sudasinghe, Ayesh, Rajakareyar, Padmassun, Matida, Edgar, Abo El Ella, Hamza, ElSayed, Mostafa S. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The growth of the airline industry has highlighted the need for more environmentally conscious aviation, leading to the conceptualization of more fuel-efficient aircraft. One concept that has received significant attention and has been associated with improved fuel efficiency is the boundary layer ingesting (BLI) propulsion system, which refers to the ingesting of the aircraft wake by the propulsors. Although BLI has theoretically been proven to reduce fuel burn, this can potentially be offset by the reduced efficiency and stability experienced by the propulsor in the presence of distorted inflow. Therefore, engine intakes must be optimized in order to mitigate the effects of BLI on the propulsion system. In this work, the shape optimization of a BLI intake is investigated using a free-form deformation technique in combination with a multi-objective genetic algorithm, in order to minimize pressure losses and distortion at the engine inlet. The optimization is performed on an S-duct intake at a cruise altitude of approximately 37,000 feet and a free stream Mach number of 0.7. An optimization strategy was developed for the task which was able to produce a Pareto optimal set of designs with improved pressure recovery and distortion. The general trend of the optimal designs shows that to reduce distortion the optimizer accelerates the flow to reduce the size of the low total pressure region and increase the dynamic pressure at the engine inlet. In contrast, the pressure recovery was increased by reducing velocity as well as shifting the maximum velocity region to the outlet, which reduces the viscous dissipation losses within the intake. The final result is a fully autonomous optimization strategy resulting in reduced pressure losses and reduced distortion leading to higher efficiency BLI S-duct intake designs.
ISSN:2673-3161
2673-3161
DOI:10.3390/applmech3030064