Significant efficiency improvement of conventional tempering by a novel flash tempering technique

A flash tempering process has been demonstrated for low-carbon low-alloy lath martensite, which includes heating the sample to 750 °C (Ac1: 752 °C), dwelling at 750 °C for 2 s, and quenching directly to room temperature. The high temperature accelerated the spread of the supersaturated carbon atoms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research and technology 2023-07, Vol.25, p.3551-3560
Hauptverfasser: Ding, Chao, Niu, Gang, Wang, Enmao, Liu, Jinxu, Gong, Na, Liu, Hongfei, Wang, Yong, Yu, Xinpan, Wang, Xuelin, Shang, Chengjia, Wu, Huibin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A flash tempering process has been demonstrated for low-carbon low-alloy lath martensite, which includes heating the sample to 750 °C (Ac1: 752 °C), dwelling at 750 °C for 2 s, and quenching directly to room temperature. The high temperature accelerated the spread of the supersaturated carbon atoms in the lath martensite, activated the dislocation migrations and thus their combining and annihilation, and promoted the mass recrystallisation. The reduced dwelling time inhibited the coarsening of the martensitic laths and suppressed the growth of the recrystallized structures. The combination of higher temperature and the shorter dwelling period, so-called flash tempering, gives rise to the same microstructure and mechanical properties as those obtained by the conventional tempering process (i.e., dwelling at 600 °C for 1 h). The high efficient flash tempering, possessing significantly reduced energy and time consumptions, may have important consequence in industrialization of tempering process. [Display omitted]
ISSN:2238-7854
DOI:10.1016/j.jmrt.2023.06.153