Current Studies on Molecular Mechanisms of Insulin Resistance
Diabetes is a metabolic disease that raises the risk of microvascular and neurological disorders. Insensitivity to insulin is a characteristic of type II diabetes, which accounts for 85-90 percent of all diabetic patients. The fundamental molecular factor of insulin resistance may be impaired cell s...
Gespeichert in:
Veröffentlicht in: | Journal of Diabetes Research 2022-12, Vol.2022, p.1863429-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Diabetes is a metabolic disease that raises the risk of microvascular and neurological disorders. Insensitivity to insulin is a characteristic of type II diabetes, which accounts for 85-90 percent of all diabetic patients. The fundamental molecular factor of insulin resistance may be impaired cell signal transduction mediated by the insulin receptor (IR). Several cell-signaling proteins, including IR, insulin receptor substrate (IRS), and phosphatidylinositol 3-kinase (PI3K), have been recognized as being important in the impaired insulin signaling pathway since they are associated with a large number of proteins that are strictly regulated and interact with other signaling pathways. Many studies have found a correlation between IR alternative splicing, IRS gene polymorphism, the complicated regulatory function of IRS serine/threonine phosphorylation, and the negative regulatory role of p85 in insulin resistance and diabetes mellitus. This review brings up-to-date knowledge of the roles of signaling proteins in insulin resistance in order to aid in the discovery of prospective targets for insulin resistance treatment. |
---|---|
ISSN: | 2314-6745 2314-6753 |
DOI: | 10.1155/2022/1863429 |