An Intelligent Artificial Neural Network-Response Surface Methodology Method for Accessing the Optimum Biodiesel and Diesel Fuel Blending Conditions in a Diesel Engine from the Viewpoint of Exergy and Energy Analysis

Biodiesel, as the main alternative fuel to diesel fuel which is produced from renewable and available resources, improves the engine emissions during combustion in diesel engines. In this study, the biodiesel is produced initially from waste cooking oil (WCO). The fuel samples are applied in a diese...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2018-04, Vol.11 (4), p.860
Hauptverfasser: Najafi, Bahman, Faizollahzadeh Ardabili, Sina, Mosavi, Amir, Shamshirband, Shahaboddin, Rabczuk, Timon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biodiesel, as the main alternative fuel to diesel fuel which is produced from renewable and available resources, improves the engine emissions during combustion in diesel engines. In this study, the biodiesel is produced initially from waste cooking oil (WCO). The fuel samples are applied in a diesel engine and the engine performance has been considered from the viewpoint of exergy and energy approaches. Engine tests are performed at a constant 1500 rpm speed with various loads and fuel samples. The obtained experimental data are also applied to develop an artificial neural network (ANN) model. Response surface methodology (RSM) is employed to optimize the exergy and energy efficiencies. Based on the results of the energy analysis, optimal engine performance is obtained at 80% of full load in presence of B10 and B20 fuels. However, based on the exergy analysis results, optimal engine performance is obtained at 80% of full load in presence of B90 and B100 fuels. The optimum values of exergy and energy efficiencies are in the range of 25-30% of full load, which is the same as the calculated range obtained from mathematical modeling.
ISSN:1996-1073
1996-1073
DOI:10.3390/en11040860