On the regulator problem for linear systems over rings and algebras

The regulator problem is solvable for a linear dynamical system if and only if is both pole assignable and state estimable. In this case, is a canonical system (i.e., reachable and observable). When the ring is a field or a Noetherian total ring of fractions the converse is true. Commutative rings w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Open mathematics (Warsaw, Poland) Poland), 2021-04, Vol.19 (1), p.101-110
Hauptverfasser: Hermida-Alonso, José Ángel, Carriegos, Miguel V., Sáez-Schwedt, Andrés, Sánchez-Giralda, Tomás
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The regulator problem is solvable for a linear dynamical system if and only if is both pole assignable and state estimable. In this case, is a canonical system (i.e., reachable and observable). When the ring is a field or a Noetherian total ring of fractions the converse is true. Commutative rings which have the property that the regulator problem is solvable for every canonical system (RP-rings) are characterized as the class of rings where every observable system is state estimable (SE-rings), and this class is shown to be equal to the class of rings where every reachable system is pole-assignable (PA-rings) and the dual of a canonical system is also canonical (DP-rings).
ISSN:2391-5455
2391-5455
DOI:10.1515/math-2021-0002