Finite Element Analysis of Mechanical Ocular Sequelae from Badminton Shuttlecock Projectile Impact

With the growing popularity of badminton worldwide, the incidence of badminton-related ocular injuries is expected to rise. The high velocity of shuttlecocks renders ocular traumas particularly devastating, especially with the possibility of permanent vision loss. This study investigated the mechani...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ophthalmology science (Online) 2025-01, Vol.5 (1), p.100625, Article 100625
Hauptverfasser: Hong, John D., Colmenarez, Jose A., Choi, Elliot H., Suh, Alex, Suh, Andrew, Lam, Matthew, Hoskin, Annette, Minckler, Don S., Lin, Ken Y., Shahraki, Kourosh, Agrawal, Rupesh, Dong, Pengfei, Gu, Linxia, Suh, Donny W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the growing popularity of badminton worldwide, the incidence of badminton-related ocular injuries is expected to rise. The high velocity of shuttlecocks renders ocular traumas particularly devastating, especially with the possibility of permanent vision loss. This study investigated the mechanism behind ocular complications through simulation analyses of mechanical stresses and pressures upon shuttlecock impact. Computational simulation study. None. A 3-dimensional human eye model was reconstructed based on the physiological and biomechanical properties of various ocular tissues. Finite element analysis simulations involved a frontal collision with a shuttlecock projectile at 128.7 km/hour (80 mph). Intraocular pressure (IOP) changes and tissue stress were mapped and quantified in the following ocular structures: the limbus, ciliary body, zonular fibers, ora serrata, retina, and optic nerve head. Intraocular pressure and tissue stress. Upon shuttlecock impact, compressive force was transferred to the anterior pole of the cornea, propagating posteriorly to the optic nerve head. Deflection of forces anteriorly contributed to refractory oscillations of compressive and tensile stress of ocular tissue. Initial impact led to a momentary (
ISSN:2666-9145
2666-9145
DOI:10.1016/j.xops.2024.100625