Stabilization to Exponential Input-to-State Stability of a Class of Neural Networks with Delay by Observer-Based Aperiodic Intermittent Control

This study is devoted to investigating the stabilization to exponential input-to-state stability (ISS) of a class of neural networks with time delay and external disturbances under the observer-based aperiodic intermittent control (APIC). Compared with the general neural networks, the state of the n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete dynamics in nature and society 2021, Vol.2021, p.1-19
Hauptverfasser: Li, Mengyue, Li, Biwen, Wan, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study is devoted to investigating the stabilization to exponential input-to-state stability (ISS) of a class of neural networks with time delay and external disturbances under the observer-based aperiodic intermittent control (APIC). Compared with the general neural networks, the state of the neural network investigated is not yet fully available. Correspondingly, an observer-based APIC is constructed, and moreover, neither the observer nor the controller requires the information of time delay. Then, the stabilization to exponential ISS of the neural network is realized severally by the observer-based time-triggered APIC (T-APIC) and the observer-based event-triggered APIC (E-APIC), and corresponding criteria are given. Furthermore, the minimum activation time rate (MATR) of the observer-based T-APIC and the observer-based E-APIC is estimated, respectively. Finally, a numerical example is given, which not only verifies the effectiveness of our results but also shows that the observer-based E-APIC is superior to the observer-based T-APIC and the observer-based periodic intermittent control (PIC) in control times and the minimum activation time rate, and the function of the observer-based T-APIC is also better than the observer-based PIC.
ISSN:1026-0226
1607-887X
DOI:10.1155/2021/9923792