Tear proteomics in dry eye disease

Dry eye disease (DED) is a multi-factorial ocular surface condition driven by compromised ocular lubrication and inflammation which leads to itching, dryness, and vision impairment. The available treatment modalities primarily target the acquired symptoms of DED including tear film supplements, anti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of ophthalmology 2023-04, Vol.71 (4), p.1203-1214
Hauptverfasser: Kannan, Ramaraj, Das, Samayitree, Shetty, Rohit, Zhou, Lei, Ghosh, Arkasubhra, Deshpande, Vrushali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dry eye disease (DED) is a multi-factorial ocular surface condition driven by compromised ocular lubrication and inflammation which leads to itching, dryness, and vision impairment. The available treatment modalities primarily target the acquired symptoms of DED including tear film supplements, anti-inflammatory drugs, mucin secretagogues, etc., However, the underlying etiology is still an area of active research, especially in regard to the diverse etiology and symptoms. Proteomics is a robust approach that has been playing major role in understanding the causative mechanism and biochemical changes in DED by identifying the changes in protein expression profile in tears. Tears are a complex fluid composed of several biomolecules such as proteins, peptides, lipids, mucins, and metabolites secreted from lacrimal gland, meibomian gland, cornea, and vascular sources. Over the past two decades, tears have emerged as a bona-fide source for biomarker identification in many ocular conditions because of the minimally invasive and simple sample collection procedure. However, the tear proteome can be altered by several factors, which increases the complexity of the approach. The recent advancements in untargeted mass spectrometry-based proteomics could overcome such shortcomings. Also, these technological advancements help to distinguish the DED profiles based on its association with other complications such as Sjogren's syndrome, rheumatoid arthritis, diabetes, and meibomian gland dysfunction. This review summarizes the important molecular profiles found in proteomics studies to be altered in DED which have added to the understanding of its pathogenesis.
ISSN:0301-4738
1998-3689
DOI:10.4103/IJO.IJO_2851_22