ΔNp63α promotes cigarette smoke-induced renal cancer stem cell activity via the Sonic Hedgehog pathway

Cigarette smoke (CS) has been generally recognized as a chief carcinogenic factor in renal cell carcinoma (RCC). The stimulative effect of CS on renal cancer stem cells (RCSCs) has been described previously. The Sonic Hedgehog (SHH) pathway plays an essential role in self-renewal, cell growth, drug...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics and molecular biology 2024-01, Vol.47 (2), p.e20230347
Hauptverfasser: Zhao, Yuxiang, Ma, Nannan, Wu, Wanngyu, Wu, Ying, Zhang, Wenbo, Qian, Weiwei, Sun, Xin, Zhang, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cigarette smoke (CS) has been generally recognized as a chief carcinogenic factor in renal cell carcinoma (RCC). The stimulative effect of CS on renal cancer stem cells (RCSCs) has been described previously. The Sonic Hedgehog (SHH) pathway plays an essential role in self-renewal, cell growth, drug resistance, metastasis, and recurrence of cancer stem cells (CSCs). Renal cancer-related gene ΔNp63α is highly expressed in renal epithelial tissues and contributes to the RCSCs characteristics of tumors. The aim of this study was to elucidate the role of ΔNp63α and the SHH pathway on the activity of RCSCs induced by CS through a series of in vivo and in vitro studies. It was shown that in renal cancer tissues, ΔNp63α and RCSCs markers in smokers are expressed higher than that in non-smokers. RCSCs were effectively enriched by tumor sphere formation assay. Besides, CS increased the expression of RCSCs markers and the capability of sphere-forming in vitro and in vivo. Moreover, the SHH pathway was activated, and the specialized inhibitor alleviated the promotion of CS on RCSCs. ΔNp63α activated the SHH pathway and promoted CS-induced enhancement of RCSCs activity. These findings indicate that ΔNp63α positively regulates the activity of CS-induced RCSCs via the SHH pathway.
ISSN:1415-4757
1678-4685
1678-4685
DOI:10.1590/1678-4685-GMB-2023-0347