Time-variant parity-time symmetry in frequency-scanning systems

Parity-time (PT) symmetry is an active research area that provides a variety of new opportunities for different systems with novel functionalities. For instance, PT symmetry has been used in lasers and optoelectronic oscillators to achieve single-frequency lasing or oscillation. A single-frequency s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-10, Vol.15 (1), p.8710-9, Article 8710
Hauptverfasser: Li, Mingjian, Hao, Tengfei, Li, Guozheng, Wang, Anle, Dai, Yitang, Li, Wei, Capmany, José, Yao, Jianping, Zhu, Ninghua, Li, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Parity-time (PT) symmetry is an active research area that provides a variety of new opportunities for different systems with novel functionalities. For instance, PT symmetry has been used in lasers and optoelectronic oscillators to achieve single-frequency lasing or oscillation. A single-frequency system is essentially a static PT-symmetric system, whose frequency is time-invariant. Here we investigate time-variant PT symmetry in frequency-scanning systems. Time-variant PT symmetry equations and eigenfrequencies for frequency-scanning systems are developed. We show that time-variant PT symmetry can dynamically narrow the instantaneous linewidth of frequency-scanning systems. The instantaneous linewidth of a produced frequency-modulated continuous-wave (FMCW) waveform is narrowed by a factor of 14 in the experiment. De-chirping and radar imaging results also show that the time-variant PT-symmetric system outperforms a conventional frequency-scanning one. Our study paves the way for a new class of time-variant PT-symmetric systems and shows great promise for applications including FMCW radar and lidar systems. Frequency-scanning systems with narrow instantaneous linewidth hold promise for various fields. Here, the authors report the use of time-variant parity-time symmetry to dynamically narrow the instantaneous linewidth of frequency-scanning systems.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-52958-3