Flight trajectory prediction enabled by time-frequency wavelet transform

Accurate flight trajectory prediction is a crucial and challenging task in air traffic control, especially for maneuver operations. Modern data-driven methods are typically formulated as a time series forecasting task and fail to retain high accuracy. Meantime, as the primary modeling method for tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-08, Vol.14 (1), p.5258-5258, Article 5258
Hauptverfasser: Zhang, Zheng, Guo, Dongyue, Zhou, Shizhong, Zhang, Jianwei, Lin, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate flight trajectory prediction is a crucial and challenging task in air traffic control, especially for maneuver operations. Modern data-driven methods are typically formulated as a time series forecasting task and fail to retain high accuracy. Meantime, as the primary modeling method for time series forecasting, frequency-domain analysis is underutilized in the flight trajectory prediction task. In this work, an innovative wavelet transform-based framework is proposed to perform time-frequency analysis of flight patterns to support trajectory forecasting. An encoder-decoder neural architecture is developed to estimate wavelet components, focusing on the effective modeling of global flight trends and local motion details. A real-world dataset is constructed to validate the proposed approach, and the experimental results demonstrate that the proposed framework exhibits higher accuracy than other comparative baselines, obtaining improved prediction performance in terms of four measurements, especially in the climb and descent phase with maneuver control. Most importantly, the time-frequency analysis is confirmed to be effective to achieve the flight trajectory prediction task. Accurate flight trajectory prediction can be a challenging task in air traffic control, especially for maneuver operations. Here, authors develop a time-frequency analysis based on an encoder-decoder neural architecture to estimate wavelet components and model global flight trends and local motion details.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-40903-9