Comprehensive Characterization of Linalool-HP-β-Cyclodextrin Inclusion Complexes

The objective of the present study is to obtain linalool- cyclodextrin (CDs) solid complexes for possible applications in the food industry. For this purpose, a detailed study of linalool complexation was carried out at different pH values, to optimize the type of CDs and reaction medium that suppor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2020-11, Vol.25 (21), p.5069
Hauptverfasser: Rodríguez-López, María Isabel, Mercader-Ros, María Teresa, Lucas-Abellán, Carmen, Pellicer, José Antonio, Pérez-Garrido, Alfonso, Pérez-Sánchez, Horacio, Yáñez-Gascón, María Josefa, Gabaldón, José Antonio, Núñez-Delicado, Estrella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of the present study is to obtain linalool- cyclodextrin (CDs) solid complexes for possible applications in the food industry. For this purpose, a detailed study of linalool complexation was carried out at different pH values, to optimize the type of CDs and reaction medium that support the highest quantity of encapsulated linalool. Once demonstrated the ability of hydroxypropyl-β-cyclodextrin (HP-β-CDs), to form inclusion complexes with linalool (K = 921 ± 21 L mol ) and given their greater complexation efficacy (6.788) at neutral pH, HP-β-CDs were selected to produce solid inclusion complexes by using two different energy sources, ultrasounds and microwave irradiation, subsequently spraying the solutions obtained in the Spray Dryer. To provide scientific solidity to the experimental results, the complexes obtained were characterized by using different instrumental techniques in order to confirm the inclusion of linalool in the HP-β-CDs hydrophobic cavity. The linalool solid complexes obtained were characterized by using H nuclear magnetic resonance ( H-NMR) and 2D nuclear magnetic resonance (ROSEY), differential scanning calorimetry, thermogravimetry and Fourier transform infrared spectrometry. Moreover, the structure of the complex obtained were also characterized by molecular modeling.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules25215069