Fisetin reduces ovalbumin-triggered airway remodeling by preventing phenotypic switching of airway smooth muscle cells

The transformation of airway smooth muscle cells (ASMCs) from a quiescent phenotype to a hypersecretory and hypercontractile phenotype is a defining feature of asthmatic airway remodeling. Fisetin, a flavonoid compound, possesses anti-inflammatory characteristics in asthma; yet, its impact on airway...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Respiratory research 2024-10, Vol.25 (1), p.370-14, Article 370
Hauptverfasser: Liu, Yuanyuan, Yin, Qiling, Liu, Bin, Lu, Zheng, Liu, Meijun, Meng, Ling, He, Chao, Chang, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The transformation of airway smooth muscle cells (ASMCs) from a quiescent phenotype to a hypersecretory and hypercontractile phenotype is a defining feature of asthmatic airway remodeling. Fisetin, a flavonoid compound, possesses anti-inflammatory characteristics in asthma; yet, its impact on airway remodeling and ASMCs phenotype transition has not been investigated. This research seeked to assess the impact of fisetin on ovalbumin (OVA) induced asthmatic airway remodeling and ASMCs phenotype transition, and clarify the mechanisms through network pharmacology predictions as well as in vivo and in vitro validation. First, a fisetin-asthma-ASMCs network was constructed to identify potential targets. Subsequently, cellular and animal studies were carried out to examine the inhibitory effects of fisetin on airway remodeling in asthmatic mice, and to detemine how fisetin impacts the phenotypic transition of ASMCs. Network analysis indicated that fisetin might affect asthma via mediating the phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (AKT) pathway. Intraperitoneal administration of fisetin in vivo reduced airway inflammation and remodeling, as shown by reduced inflammatory cells, decreased T helper type 2 (Th2) cytokine release, diminished collagen accumulation, mitigated airway smooth muscle thickening, and decreased expression of osteopontin (OPN), collagen-I and α-smooth muscle actin (α-SMA). Moreover, fisetin suppressed the PI3K/AKT pathway in asthmatic lung tissue. According to the in vitro data, fisetin downregulated the expression of the synthetic phenotypic proteins OPN and collagen-I, contractile protein α-SMA, and inhibited cellular migration, potentially through the PI3K/AKT pathway. These results suggest that fisetin inhibits airway remodeling in asthma by regulating ASMCs phenotypic shift, emphasizing that fisetin is a promising candidate for the treatment of airway smooth muscle remodeling.
ISSN:1465-993X
1465-9921
1465-993X
DOI:10.1186/s12931-024-03005-8