Quantum and Classical Bayesian Agents

We describe a general approach to modeling rational decision-making agents who adopt either quantum or classical mechanics based on the Quantum Bayesian (QBist) approach to quantum theory. With the additional ingredient of a scheme by which the properties of one agent may influence another, we arriv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum (Vienna, Austria) Austria), 2022-05, Vol.6, p.713, Article 713
Hauptverfasser: DeBrota, John B., Love, Peter J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a general approach to modeling rational decision-making agents who adopt either quantum or classical mechanics based on the Quantum Bayesian (QBist) approach to quantum theory. With the additional ingredient of a scheme by which the properties of one agent may influence another, we arrive at a flexible framework for treating multiple interacting quantum and classical Bayesian agents. We present simulations in several settings to illustrate our construction: quantum and classical agents receiving signals from an exogenous source, two interacting classical agents, two interacting quantum agents, and interactions between classical and quantum agents. A consistent treatment of multiple interacting users of quantum theory may allow us to properly interpret existing multi-agent protocols and could suggest new approaches in other areas such as quantum algorithm design.
ISSN:2521-327X
2521-327X
DOI:10.22331/q-2022-05-16-713