The Effects of Varying Glenohumeral Joint Angle on Acute Volume Load, Muscle Activation, Swelling, and Echo-Intensity on the Biceps Brachii in Resistance-Trained Individuals

There is a paucity of data on how manipulating joint angles during isolation exercises may impact overall session muscle activation and volume load in resistance-trained individuals. We investigated the acute effects of varying glenohumeral joint angle on the biceps brachii with a crossover repeated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sports (Basel) 2019-09, Vol.7 (9), p.204
Hauptverfasser: Barakat, Christopher, Barroso, Renato, Alvarez, Michael, Rauch, Jacob, Miller, Nicholas, Bou-Sliman, Anton, De Souza, Eduardo O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is a paucity of data on how manipulating joint angles during isolation exercises may impact overall session muscle activation and volume load in resistance-trained individuals. We investigated the acute effects of varying glenohumeral joint angle on the biceps brachii with a crossover repeated measure design with three different biceps curls. One session served as the positive control (CON), which subjects performed 9 sets of bicep curls with their shoulder in a neutral position. The experimental condition (VAR), varied the glenohumeral joint angle by performing 3 sets in shoulder extension (30°), 3 sets neutral (0°), and 3 sets in flexion (90°). Volume load and muscle activation (EMG) were recorded during the training sessions. Muscle swelling and strain were assessed via muscle thickness and echo-intensity responses at pre, post, 24 h, 48 h, and 72 h. There were no significant differences between conditions for most dependent variables. However, the overall session EMG amplitude was significantly higher (p = 0.0001) in VAR compared to CON condition (95%-CI: 8.4% to 23.3%). Our findings suggest that varying joint angles during resistance training (RT) may enhance total muscle activation without negatively affecting volume load within a training session in resistance-trained individuals.
ISSN:2075-4663
2075-4663
DOI:10.3390/sports7090204