Improving the Power Outage Resilience of Buildings with Solar PV through the Use of Battery Systems and EV Energy Storage
Buildings with solar photovoltaic (PV) generation and a stationary battery energy storage system (BESS) may self-sustain an uninterrupted full-level electricity supply during power outages. The duration of off-grid operation is dependent on the time of the power fault and the capabilities of the hom...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2021-09, Vol.14 (18), p.5749 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Buildings with solar photovoltaic (PV) generation and a stationary battery energy storage system (BESS) may self-sustain an uninterrupted full-level electricity supply during power outages. The duration of off-grid operation is dependent on the time of the power fault and the capabilities of the home energy management system (HEMS). In this paper, building resilience is quantified by analyzing the self-sustainment duration for all possible power outages throughout an entire year. An evaluation method is proposed and exercised on a reference house in California climate zone 9 for which the detailed electricity usage is simulated using the EnergyPlus software. The influence of factors such as energy use behavioral patterns, energy storage capacity from the BESS, and an electric vehicle (EV) battery on the building resilience is evaluated. Varying combinations of energy storage and controllable loads are studied for optimally improved resilience based on user preferences. It is shown that for the target home and region with a solar PV system of 7.2 kW, a BESS with a capacity of 11 kWh, and an EV with a battery of 80 kWh permanently connected to the home, off-grid self-sustained full operation is guaranteed for at least 72 h. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en14185749 |