Extremal problems of double stars

In a generalized Tur\'an problem, two graphs $H$ and $F$ are given and the question is the maximum number of copies of $H$ in an $F$-free graph of order $n$. In this paper, we study the number of double stars $S_{k,l}$ in triangle-free graphs. We also study an opposite version of this question:...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics and theoretical computer science 2023-04, Vol.24, no 2 (Graph Theory)
Hauptverfasser: Győri, Ervin, Wang, Runze, Woolfson, Spencer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a generalized Tur\'an problem, two graphs $H$ and $F$ are given and the question is the maximum number of copies of $H$ in an $F$-free graph of order $n$. In this paper, we study the number of double stars $S_{k,l}$ in triangle-free graphs. We also study an opposite version of this question: what is the maximum number edges/triangles in graphs with double star type restrictions, which leads us to study two questions related to the extremal number of triangles or edges in graphs with degree-sum constraints over adjacent or non-adjacent vertices.
ISSN:1365-8050
1365-8050
DOI:10.46298/dmtcs.8499