Extremal problems of double stars
In a generalized Tur\'an problem, two graphs $H$ and $F$ are given and the question is the maximum number of copies of $H$ in an $F$-free graph of order $n$. In this paper, we study the number of double stars $S_{k,l}$ in triangle-free graphs. We also study an opposite version of this question:...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics and theoretical computer science 2023-04, Vol.24, no 2 (Graph Theory) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a generalized Tur\'an problem, two graphs $H$ and $F$ are given and the
question is the maximum number of copies of $H$ in an $F$-free graph of order
$n$. In this paper, we study the number of double stars $S_{k,l}$ in
triangle-free graphs. We also study an opposite version of this question: what
is the maximum number edges/triangles in graphs with double star type
restrictions, which leads us to study two questions related to the extremal
number of triangles or edges in graphs with degree-sum constraints over
adjacent or non-adjacent vertices. |
---|---|
ISSN: | 1365-8050 1365-8050 |
DOI: | 10.46298/dmtcs.8499 |