XIST promotes apoptosis and the inflammatory response in CSE-stimulated cells via the miR-200c-3p/EGR3 axis

Background Chronic obstructive pulmonary disease (COPD) is a disease that causes obstructed airways and abnormal inflammatory responses in the lungs. Early growth response 3 (EGR3) has been revealed to play a vital role in the regulation of the inflammatory response in certain diseases. We aimed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC pulmonary medicine 2021-07, Vol.21 (1), p.1-215, Article 215
Hauptverfasser: Chen, Panfeng, Jiang, Ping, Chen, Jianing, Yang, Yang, Guo, Xiumei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Chronic obstructive pulmonary disease (COPD) is a disease that causes obstructed airways and abnormal inflammatory responses in the lungs. Early growth response 3 (EGR3) has been revealed to play a vital role in the regulation of the inflammatory response in certain diseases. We aimed to explore the role of EGR3 and its upstream mechanism in COPD. Methods and result In the present study, 16HBE cells were treated with cigarette smoke extract (CSE) to mimic the inflammatory response in vitro. RT-qPCR revealed that the expression of EGR3 was upregulated in lungs from COPD patients. EGR3 expression in 16HBE cells was increased by CSE treatment. Moreover, flow cytometry analysis and western blot analysis showed that EGR3 downregulation inhibited 16HBE cell apoptosis. EGR3 silencing decreased the protein levels of IL-6, TNF-[alpha], IL-1[beta] and COX2 in CSE-stimulated 16HBE cells. In addition, EGR3 was targeted by microRNA-200c-3p (miR-200c-3p) in 16HBE cells. MiR-200c-3p expression was significantly decreased in lung tissues from COPD patients compared to that in healthy controls. Furthermore, miR-200c-3p bound to lncRNA X-inactive specific transcript (XIST) in 16HBE cells. Additionally, XIST expression was elevated in lung tissues from COPD patients. Rescue assays indicated that EGR3 overexpression counteracted the effects of XIST downregulation on apoptosis and inflammation in CSE-stimulated 16HBE cells. Conclusion The XIST/miR-200c-3p/EGR3 axis facilitated apoptosis and inflammation in CSE-stimulated 16HBE cells. These findings may provide novel insight for treating COPD by alleviating lung inflammation. Keywords: XIST, miR-200c-3p, EGR3, Chronic obstructive pulmonary disease
ISSN:1471-2466
1471-2466
DOI:10.1186/s12890-021-01582-8