Annealing Effect on the Microstructure and Mechanical Properties of AA 5182 Aluminum Alloy

The properties of aluminum alloys can be improved by the processing conditions that cause changes in the microstructure and by the addition of alloy elements. In order to understand the physical behavior and mechanical properties of aluminum alloys, it is important to be aware of some of the microst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials research (São Carlos, São Paulo, Brazil) São Paulo, Brazil), 2021-01, Vol.24 (4), p.1
Hauptverfasser: Marinho Filizzola, Daniel, da Silva Santos, Thaís, Gomes de Miranda, Adalberto, Martins da Costa, João Carlos, Reis do Nascimento, Nayra, Dantas dos Santos, Marcos, Hoel Bello, Roger, Garcia del Pino, Gilberto, Costa de Macêdo Neto, José
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The properties of aluminum alloys can be improved by the processing conditions that cause changes in the microstructure and by the addition of alloy elements. In order to understand the physical behavior and mechanical properties of aluminum alloys, it is important to be aware of some of the microstructural characteristics. Some of these characteristics are the morphology, alloy elements, volume and size, and second phase. In this study, we analyzed the effect of annealing on the mechanical and microstructural properties of the laminated AA 5182 aluminum alloy, when subjected to different annealing conditions. The alloy was heated to temperatures of 50º C, 100º C, 150º C, 200º C, 250º C and 300º C for 10 minutes and left to cool naturally. The evolution of the microstructure was characterized by optical and electronic microscopy with EDS, and, to obtain the mechanical properties, a tensile test was performed and the fractures were subsequently analyzed. The results showed that the heat treatment used reduced the amount of second phase particles and this influenced the mechanical properties.
ISSN:1516-1439
1980-5373
1980-5373
DOI:10.1590/1980-5373-mr-2020-0545