Characteristics of PM2.5 mass concentrations and chemical species in urban and background areas of China: emerging results from the CARE-China network

The “Campaign on Atmospheric Aerosol Research” network of China (CARE-China) is a long-term project for the study of the spatio-temporal distributions of physical aerosol characteristics as well as the chemical components and optical properties of aerosols over China. This study presents the first l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric chemistry and physics 2018-06, Vol.18 (12), p.8849-8871
Hauptverfasser: Liu, Zirui, Gao, Wenkang, Yu, Yangchun, Hu, Bo, Xin, Jinyuan, Sun, Yang, Wang, Lili, Wang, Gehui, Bi, Xinhui, Zhang, Guohua, Xu, Honghui, Cong, Zhiyuan, He, Jun, Xu, Jingsha, Wang, Yuesi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The “Campaign on Atmospheric Aerosol Research” network of China (CARE-China) is a long-term project for the study of the spatio-temporal distributions of physical aerosol characteristics as well as the chemical components and optical properties of aerosols over China. This study presents the first long-term data sets from this project, including 3 years of observations of online PM2.5 mass concentrations (2012–2014) and 1 year of observations of PM2.5 compositions (2012–2013) from the CARE-China network. The average PM2.5 concentration at 20 urban sites is 73.2 µg m−3 (16.8–126.9 µg m−3), which was 3 times higher than the average value from the 12 background sites (11.2–46.5 µg m−3). The PM2.5 concentrations are generally higher in east-central China than in the other parts of the country due to their relatively large particulate matter (PM) emissions and the unfavourable meteorological conditions for pollution dispersion. A distinct seasonal variability in PM2.5 is observed, with highs in the winter and lows during the summer at urban sites. Inconsistent seasonal trends were observed at the background sites. Bimodal and unimodal diurnal variation patterns were identified at both urban and background sites. The chemical compositions of PM2.5 were analysed at six paired urban and background sites located within the most polluted urban agglomerations – North China Plain (NCP), Yangtze River delta (YRD), Pearl River delta (PRD), North-east China region (NECR), South-west China region (SWCR) – and the cleanest region of China – the Tibetan Autonomous Region (TAR). The major PM2.5 constituents across all the urban sites are organic matter (OM, 26.0 %), SO42- (17.7 %), mineral dust (11.8 %), NO3- (9.8 %), NH4+ (6.6 %), elemental carbon (EC) (6.0 %), Cl− (1.2 %) at 45 % RH and unaccounted matter (20.7 %). Similar chemical compositions of PM2.5 were observed at background sites but were associated with higher fractions of OM (33.2 %) and lower fractions of NO3- (8.6 %) and EC (4.1 %). Significant variations of the chemical species were observed among the sites. At the urban sites, the OM ranged from 12.6 µg m−3 (Lhasa) to 23.3 µg m−3 (Shenyang), the SO42- ranged from 0.8 µg m−3 (Lhasa) to 19.7 µg m−3 (Chongqing), the NO3- ranged from 0.5 µg m−3 (Lhasa) to 11.9 µg m−3 (Shanghai) and the EC ranged from 1.4 µg m−3 (Lhasa) to 7.1 µg m−3 (Guangzhou). The PM2.5 chemical species at the background sites exhibited larger spatial heterogeneities than those at urban sites, s
ISSN:1680-7316
1680-7324
DOI:10.5194/acp-18-8849-2018