Single-photon emission computed tomography/computed tomography imaging of RAGE in smoking-induced lung injury

Expression of the Receptor for Advanced Glycation Endproducts (RAGE) initiates pro-inflammatory pathways resulting in lung destruction. We hypothesized that RAGE directed imaging demonstrates increased lung uptake in smoke-exposure. After exposure to room air or to cigarette smoke for 4-weeks or 16-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Respiratory research 2019-06, Vol.20 (1), p.116-116, Article 116
Hauptverfasser: Goldklang, Monica P, Tekabe, Yared, Zelonina, Tina, Trischler, Jordis, Xiao, Rui, Stearns, Kyle, Rodriguez, Krissy, Shields, Alexander, Romanov, Alexander, D'Armiento, Jeanine M, Johnson, Lynne L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Expression of the Receptor for Advanced Glycation Endproducts (RAGE) initiates pro-inflammatory pathways resulting in lung destruction. We hypothesized that RAGE directed imaging demonstrates increased lung uptake in smoke-exposure. After exposure to room air or to cigarette smoke for 4-weeks or 16-weeks, rabbits were injected with Tc-anti-RAGE F(ab') and underwent Single-Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) imaging. Lung radiotracer uptake was calculated as percent injected dose (%ID). Lungs were dissected for gamma well counting and histological analysis. Tc-anti-RAGE F(ab') SPECT/CT imaging demonstrated increased lung expression of RAGE with smoke exposure compared to room air control at 4-weeks: Room air right (R) 0.75 ± 0.38%ID, left (L) 0.62 ± 0.32%ID vs. Smoke exposed R 0.17 ± 0.03, L 0.17 ± 0.02%ID (p = 0.02 and 0.028, respectively). By 16-weeks of smoke exposure, the uptake decreased to 0.19 ± 0.05%ID R and 0.17 ± 0.05%ID L, significantly lower than 4-week imaging (p = 0.0076 and 0.0129 respectively). Staining for RAGE confirmed SPECT results, with the RAGE ligand HMGB1 upregulated in the macrophages of 4-week smoke-exposed rabbits. RAGE-directed imaging identified pulmonary RAGE expression acutely in vivo in an animal model of emphysema early after smoke exposure, with diminution over time. These studies document the extent and time course of RAGE expression under smoke exposure conditions and could be utilized for disease monitoring and examining response to future RAGE-targeted therapies.
ISSN:1465-993X
1465-9921
1465-993X
1465-9921
DOI:10.1186/s12931-019-1064-4