Historical and projected spatial and temporal rainfall status of Dar es Salaam, Tanzania, from 1982 to 2050

Dar es Salaam, like other cities in Africa, experiences flash floods during the rainfall season that destroy infrastructure due to the overflow of rivers and blocked sewage. This study investigates the historical and future variability and changes in spatial and temporal rainfall over Dar es Salaam....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in environmental science 2022-12, Vol.10
Hauptverfasser: Nyembo, Latifa O., Mwabumba, Mohamed, Jahangeer, Jahangeer, Kumar, Vikram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dar es Salaam, like other cities in Africa, experiences flash floods during the rainfall season that destroy infrastructure due to the overflow of rivers and blocked sewage. This study investigates the historical and future variability and changes in spatial and temporal rainfall over Dar es Salaam. Station data and Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) gridded data crossing 38 years (1982–2019) were used as a baseline and the Coordinated Regional Climate Downscaling Experiment (CORDEX) dataset from 2021 to 2050 was used for projection under Representative Concentration Pathway (RCP 4.5) forcing scenarios. A trend analysis of historical data was conducted at monthly, seasonal, and annual timescales. Mann–Kendall statistical tests and Sen’s slope estimator were applied to identify the current trend direction and magnitude of changes in rainfall patterns over time. A standardized anomaly index (SAI) was also employed to detect the region’s trends in wetness and dryness. The spatial distribution of rainfall in the city was investigated using an inverse distance weighted (IDW) interpolation technique. The statistical results reveal that a non-significant trend in rainfall was observed on monthly, seasonal, and annual timescales. Generally, in the future (2021–2050), the annual cycle of rainfall shows a slight decrease in monthly rainfall, especially from January to August, and an increase from September to December compared to historical (1982–2019) rainfall, for most of studied locations. Spatially, the distribution of projected rainfall shows that the southern part of the city will experience higher rainfall than other parts. The most significant findings were a decrease in annual projected rainfall by 20%, the MAM projected rainfall season increased by 42%, and an increase of 38% of the OND-projected rainfall season. The findings of this study will be useful for the improved management and planning of the city.
ISSN:2296-665X
2296-665X
DOI:10.3389/fenvs.2022.1025760