Cu(II) immobilization onto a one-step synthesized poly(4-vinylpyridine-co-ethylene glycol dimethacrylate) resin: Kinetics and XPS analysis

Synthesis of an unconventional resin based on 4-vinylpyridine (4-VP) and its Cu(II) sorption behavior were studied. Three samples of macroporous crosslinked poly(4-vinylpyridine-co-ethylene glycol dimethacrylate) [P4VPE] with different porosity parameters were prepared by suspension copolymerization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hemijska industrija 2016, Vol.70 (1), p.9-19
Hauptverfasser: Maksin, Danijela, Nastasovic, Aleksandra, Maksin, Tatjana, Sandic, Zvjezdana, Loos, Katja, Ekmescic, Bojana, Onjia, Antonije
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synthesis of an unconventional resin based on 4-vinylpyridine (4-VP) and its Cu(II) sorption behavior were studied. Three samples of macroporous crosslinked poly(4-vinylpyridine-co-ethylene glycol dimethacrylate) [P4VPE] with different porosity parameters were prepared by suspension copolymerization by varying the n-heptane amount in the inert component. The samples were characterized by mercury porosimetry, elemental analysis and x-ray photoelectron spectroscopy (XPS). The sorption of P4VPE for Cu(II) ions, determined under non-competitive conditions, was relatively rapid, i.e. the maximum capacity was reached within 30 min. The maximum experimental sorption capacity for the sample with the highest values of pore diameter and specific pore volume (Sample 3, Qeq = 89 mg g-1) was 17.5 times higher than for the sample with the lowest values of pore diameter and specific pore volume (Sample 1, Qeq = 5.1 mg g-1). Since the values for pyridine content in all P4VPE samples were almost the same, it was concluded that the porosity parameters have predominant influence on Cu(II) sorption rates on P4VPE. The sorption behavior and the rate-controlling mechanisms were analyzed using six kinetic models (pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion, Bangham and Boyd models). XPS study clarified the nature of the formed P4VPE-Cu(II) species.
ISSN:0367-598X
2217-7426
DOI:10.2298/HEMIND141203007M